
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5720--96-9803 C:'

Automatic Data Sorting Using
Neural Network Techniques

BEHROOZ KAMGAR-PARSI

Naval Center for Applied Research in Artificial Intelligence
Information Technology Division

BEHZAD KAMGAR-PARSI

Advanced Information Technology Branch
Information Technology Division

JOHN C. SCIORTINO, JR.

EW Support Measures Branch
Tactical Electronic Warfare Division

February 8, 1996

Approved for public release; distribution unlimited.



REPORT DOCUMENTATION PAGE |Form Approved

Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 8, 1996 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PE - 62270N
Automatic Data Sorting Using Neural Network Techniques

6. AUTHOR(S)

Behrooz Kamgar-Parsi, Behzad Kamgar-Parsi, and John C. Sciortino, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRL/FR/5720--96-9803

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

When several data sources are sending asynchronously without any multiplexing conventions, the stream of data from each
source will be interleaved in an unpredictable sequence. In such a sequence, it would be highly desirable to deinterleave the
data streams before attempting further processing. After the application of certain signal processing techniques on the incoming
interleaved data stream, one obtains a feature space in which different data sources typically form distinct clusters. It is
therefore essential to have a reliable clustering technique to determine: (1) the correct number of sources, and (2) the correct
membership for each datum. The Hopfield-Kamgar neural net clustering technique appears to be the clustering technique of
choice for this task. We explain the main aspects of our technique and briefly discuss alternative neural nets and conventional
methods for clustering, in particular as applied to data deinterleaving.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Artificial neural networks Deinterleaving 17
Hopfield neural networks Algorithms 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

i

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

298-102



CONTENTS

1. INTRODUCTION AND BACKGROUND ................................................................ 1

2. HOPFIELD-KAMGAR TECHNIQUE ................................................................. 2

3. COMPARISON OF CONVENTIONAL AND HOPFIELD-KAMGAR TECHNIQUES .................... 3

4. THE KOHONEN TECHNIQUE ............................. 7

4.1 One-Pass Implementation .......................... 7
4.2 Iterative Implementation .......................... 8

5. RELATIVE MERITS OF HOPFIELD-KAMGAR AND KOHONEN METHODS ............................. 8

6. FINDING THE CORRECT NUMBER OF CLUSTERS ............................................. ................ 9

7. OTHER NEW CLUSTERING FEATURES ............................................................ 11

7.1 Two-Stage Solution ............................................................ 11
7.2 Handling Poor Initial Values for Cluster Numbers ........................................ 11
7.3 Merging or Splitting and Activities of Neurons ........................................ 11

8. THE SOFTWARE AND SOME EXAMPLES ........................................ 12

9. CONCLUSIONS ........................................ 13

R EFER EN C E Si.......................................................................................................................................... 13



AUTOMATIC DATA SORTING USING NEURAL
NETWORK TECHNIQUES

1. INTRODUCTION AND BACKGROUND

A major signal processing problem is to correctly separate or deinterleave data streams produced by
multiple data sources from the electromagnetic environment. Through signal analysis of data parameters,
it is usually possible to deinterleave these streams and assign them to specific sources. This
categorization is not always simple, nor is there a unique, provable solution to every categorization
problem. It is sometimes necessary to look at inter-relationships of multiple parameters. Often this type
of analysis is done manually by experienced analysts. Being able to quickly and accurately identify an
incoming data stream automatically and autonomously without operator intervention is quite significant.

This report addresses the data deinterleaving capability of several algorithms that use data feature
parameters. Special equipment in the form of feature extractor processors are required to provide feature
parameters in real time. For each datum, each feature parameter can be made a component of a vector in
feature space. The space this vector occupies can be used to uniquely associate a datum with a source,
thereby deinterleaving it from within a group of collected data points. The data points associated with
each source tend to cluster together, leaving each cluster associated with a different source.

The feature vector is a high-dimensional quantity that contains a large capability to separate data
streams. In this report, only two of the lowest order components are used. Another aspect of the problem
is that no initial knowledge of the true number of classes or data sources exists for any given dala'set.
With these limitations, this problem is not uniquely solvable under the standard means of cluster
analysis. A self-adapting distribution sampling or clustering algorithm is needed to solve this problem.
Based upon preliminary investigations, the use of artificial neural network (ANN) algorithms can provide
the necessary capability to solve such a classification problem. The algorithm should use unsupervised
learning and be data-shape independent since there is no guarantee that data will cluster in particular
shapes.

The algorithm should analyze the data environment by detecting data clusters and determining the
parametric limits of those clusters. The data used for this report were collected during field exercises. As
real-world data, these collections contain the full spectrum of potential collection distortions. This will
allow the developed algorithms to be more robust and adaptable when deployed.

Clustering is an important feature used in many fields, hence, many clustering techniques have been
developed. In recent years, clustering techniques inspired by neural networks have been added to the
designer's repertory. Kohonen's [1] self-organizing maps have been used to partition the feature space
into distinct regions. Kamgar-Parsi et al. formulated the problem as an optimization problem using the
Hopfield [2] network and applied it to compact clustering [3] as well as shape-specific clustering [4]. For
simplicity, from now on we will refer to the latter neural net clustering technique as the Hopfield-Kamgar
method.

Manuscript approved November 2, 1995.
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By clustering, we mean partitioning a set of N patterns (the patterns are represented as points in a d-
dimensional metric feature space) into K clusters in such a way that those in a given cluster are more
similar, in certain ways, to each other than the rest. As there are approximately KNK! possible ways of
partitioning the patterns among K clusters [5], the problem has exponential complexity and finding the
best solution is beyond exhaustive search. Yet, neural net techniques are effective in finding practically
the best solution in most cases. For this project, we experimented with both the Kohonen and the
Hopfield-Kamgar techniques. Since iterative conventional techniques are the most popular clustering
techniques, we also compare their performances with the Hopfield-Kamgar technique.

Section 2 of this report describes the Hopfield-Kamgar clustering technique. Section 3 compares the
Hopfield-Kamgar technique with the conventional technique. Section 4 describes the Kohonen technique.
Section 5 discusses the suitability of the Hopfield-Kamgar vs the Kohonen technique for this project.
Section 6 describes the scheme that we have developed for finding the correct number of data sources.
Section 7 discusses major new clustering ideas that were developed while working on this project -

these ideas greatly enhanced the efficacy and the reliability of the Hopfield-Kamgar clustering technique.
Finally, Section 8 contains some remarks about the software and a couple of examples.

2. HOPFIELD-KAMGAR TECHNIQUE

We used analog neural nets for this problem because they outperform digital nets in solving
optimization problems [2- 4]. Many problems of interest, including the problem we address in this report,
can be cast in terms of an energy function E that is quadratic in the neuronal activities and has the form
[2]

E= nj n (1) VE = -2IE,iTijViVj-,liVi +-A ,f dx g-'(x). 1
i=1 j=1 i= I i=t

Here n is the number of neurons in the network, and Vi (0< Vi < 1) is the activity or firing rate of neuron
i. The first term in Eq. (1) is the interaction energy among neurons. In the second term, Ii is the bias or
activity threshold of neuron i. The third term encourages the network to operate in the interior of the n
dimensional unit cube { 0 < Vi <1} that forms the state space of the system. In this term, X is the self-

decay time of the neurons, and g, a sigmoid function, is the gain or transfer function of the neurons that
relates the input ui to the output Vi. A standard form for g, which we will also use, isV =g~u~) =~(1+tanh ) =IVi = g(ui ) 1( ++ tanh2) = , where u0 determines the steepness of gain. The

2 uO l+exp(-2ui/uo)' 
neuronal activities Vi as well as the input signals ui depend on time t. The evolution of the network is
determined by the n coupled ordinary differential equations dui /dt =-a Ela V7 which are

dUi =_Ui + AnjVj+I (2)
dt IC j=(2

We will set t = 1, so that time is measured in units of I. To find a solution (i.e., a minimum), we
start the network from a randomly selected state and let it evolve until it reaches a minimum of the
function and stops [6].

We want to partition a set of N points in a 2-D plane (generalization to arbitrary dimensions is trivial)
into the best K clusters - best in the sense that the sum of the squares of the distances of the points from
their respective cluster centroids (i.e., sum of "within cluster variances") is minimized. We formulate the
problem in a manner that can be solved by a neural network; that is, we cast the problem in terms of an
energy function that can be minimized by the network.
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The energy function will consist of two parts: (i) constraint terms which make certain a point, at the
end of the search, belongs to one and only one cluster; (ii) the cost term which is the sum of the residuals
and is the function we actually wish to minimize. To partition N points (patterns) among K clusters, we
need to have n = K x N neurons, i.e., K neurons for each point. We denote each neuron by two letters,
e.g., neuron pi, and let VP, stands for its activity. The magnitude of VPj represents the weight with which

point i belongs to cluster p. The energy function E can then be expressed as

2
A N K K B N K K N

E =2d VpiVqi + p2iV~,-1 +C aRp1 Vp, (3)
2 i=1 p=l p 2-i=1 p=l p=l i=l

where the coefficients A, B, and C are positive constants. The A-term and the B-term are the constraint
terms, and together they enforce the syntax of the problem. The C-term is the cost term, where Rpi, the
square of the distance of point i from the centroid of cluster p (i.e., the residual), is given by

R= - + (y1 - 2 are the coordinates of point i, and (XvYp) are the coordinates of the

centroid of cluster p. The centroid of cluster p is obtained from the weighted average shown in Eq. (4).
Generalizing to higher dimensions is straightforward.

= N V/ NV
Xp i= EZiXvpi / Et'lvpi

YP Eyi-Vpi 1 i=lvpi (4)

The network dynamics, obtained from -aD E/ Vpi,7 are

du. ~~K K

du upi -A I Vi - B Vqi -1 -CRPiVPi +IPi- ()
,~~~~~~~d qWp q=1

To find a solution, we assign random values between 0 and 1 to all the n= K x N neuronal
activities, Vpi, and solve n ordinary differential equations until the activities of all the neurons cease to

change.

For simulations, we have chosen the following values for the parameters of the energy function: A =

B = 1, C = 0.9/Ravg,. all Ipj = 1, and the gain function parameter uo = 0.1. Scaling parameter C with the
average residual Ravg is necessary to ensure good solutions, because as the network evolves, the residuals
become generally smaller and the cost term becomes less effective in driving the network toward good
solutions. This resealing of parameter C keeps the cost term of the same order of magnitude as the syntax
terms. The parameter values are selected by analyzing dynamical stability of valid solutions [7]. Also, for
a general discussion of the effectiveness of the Hopfield network, the reader is referred to Ref. 8.

3. COMPARISON OF CONVENTIONAL AND HOPFIELD-KAMGAR TECHNIQUES

To compare the performance of the Hopfield-Kamgar neural net technique with a popular
conventional technique, we have experimented with some data sets. In the first data set, there are 128
points divided among five clusters with within-cluster Gaussian distributions (Fig. l(a)). Here the five
clusters are rather well defined, and out of the 128 trials, the neural net found the optimum clusters 128
times. The conventional method of Forgy [9] in 128 trials found the best clusters only 46 times and

3
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various other solutions 82 times. Clearly, in this example, the neural net outperforms the conventional
method, in that it finds the best solution much more frequently.

To test the performance of the network in cases where the clusters are fuzzy, we started from the data
points of Fig.l(a), randomly selected 10% of the points, and distributed them uniformly throughout the
unit square (Fig. 1(b)). Thus we obtained 5 clusters with uniform background noise. The neural net in 128
trials found the best clusters 28 times. It failed to find valid solutions satisfying the syntax 46 times. This
large number of failed solutions can be interpreted as an indication that the clusters are fuzzy, that there
are outliers, and that perhaps the specified number of clusters, K = 5, is too few. However, even when the
syntax is not satisfied, we can extract a valid solution with the following scheme. For each point i, set the
largest Vpi to 1 and all the other Vqi with q • p to 0, and interpret this solution as the one favored by the
network; thus, we obtain 128 solutions. Conventional algorithms always find valid solutions and cannot
give an objective indication of the fuzziness of clusters.

Similarly to Fig. l(b), we generated other data sets by increasing the background noise to 25%, 50%,
75%, and 100% (i.e., no clusters). These data are shown in Fig. 1(c-f). Table 1 lists the results of 128
trials with partitioning the data among five clusters using the neural net and Forgy's method. The average
estimated convergence times for the network are given in units of a. Two points should be noted in this
table:

1. As the five clusters become less discernible, the network increasingly fails to satisfy the syntax,
indicating that the clusters are fuzzy and that five clusters are not sufficient. The conventional method, on
the other hand, always finds valid solutions. Although the variety of solutions that it finds increases (this
is true in both methods), it may be taken as a clue to the fuzziness of the clusters. It is not as objective an
indicator as the failure to satisfy the syntax.

2. When there are well-defined clusters, the neural net performs better than the conventional
techniques, which is reflected in the lower average (is the sum of within-cluster variances) for the
solutions found by the neural net. As the clusters become fuzzier, the quality of the solutions found by
both methods becomes comparable.

For the data of Fig. l(f), the centroid trajectories converge to many different points for different
trials, which shows that where there is no underlying structure in the data, the network does not prefer
any particular clustering and, hence, finds many different solutions.

To test how this neural net algorithm scales with the size of the problem, we generated 32, 64, 128,
and 256 data points, distributed among five rather well-separated clusters. In all the cases, the network
found valid solutions in all of its trials, and the best solution in nearly all of its trials, consistently
performing better than Forgy's algorithm. Thus, it appears that the Hopfield-Kamgar clustering technique
scales well.

We briefly mention that in another example we used a standard clustering data set, namely
Anderson's four-dimensional iris data (Fig. 2), which is composed of three well-separated clusters. As
was the case with the example of Fig. l(a), the neural net approach found the best solution in all of its
100 trials, whereas the conventional technique found the best solution in 78% of its trials.

Kamgoar-Parsi, Kamgar-Parsi, and Sciortino4



Automatic Data Sorting Using Neural Network Techniques

Fig. 1 - 128 data points in the unit square: (a) 5 well-defined clusters with within-cluster
Gaussian distributions; (b) same clusters with 10% uniform background noise; (c) with 25%
noise; (d) with 50% noise; (e) with 75% noise; and (f) uniform distribution or 100% noise.
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Fig. 2- Anderson's four-dimensional data set composed of 150
samples of three species of iris: (upper) two different three-
dimensional profiles of Anderson's data set, and (lower) two
cluster representations of the profiles immediately above them.

Table 1-Forgy's Conventional Algorithm Results Compared with
those Obtained by the Neural Network (Based on 128 Trials)

Data Conventional
Iter Best Var Best % Avg Var

a 7 0.62 36 1.23
b 8 1.06 34 1.57
c 8 1.95 12 2.27
d 10 2.94 2 3.14
e 10 3.88 10 4.11

10 4.46 2 4.64

Data Neural Net
Time Best Var Best % Avg Var Synt %

a 4 0.62 100 0.62 100
b 7 1.06 22 1.24 64
c 7 1.95 19 2.03 9
d 8 3.00 15 3.04 0
e 6 3.89 1 4.11 1
f 8 4.46 2 4.71 0

Note: The following items related to Table 1 are referenced to the data in Fig. l(a-f). Data refers to the data
points of Fig. l(a-f). Iter is the average number of iterations for convergence. Best Var is the variance of the
best solution found. Best% is the percentage of trials that found the best solution. Avg Var is the average
variance of the solutions found. Time is the average estimated time of convergence in units of a. Synt% is the
percentage of trials that found solutions satisfying the syntax.
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4. THE KOHONEN TECHNIQUE

A technique that may be used for unsupervised clustering of data is based on Kohonen's Self-
Organizing Map principle [1]. The idea behind this technique, often called competitive learning, is as
follows: Assume a sequence of (statistical) samples of a vectorial observable x = x(t) , where t is the
time coordinate, and a set of variable reference vectors y, (t), i = 1,.., K. Both x(t) and y, (t) are D-
dimensional vectors. Assume that y1 (0) are initialized in some manner. If x(t) can be compared with
each yi (t) at each succesive time step, taken to be integer t = 1,2,3,*. *, then the best matching yi (t) is to
be updated to match even more closely the current x(t). This is an approach to the classical Vector
Quantization where one wants to produce an approximation to a (continuous) probability density function
p(x) of the input vector X using a finite number of codebook vectors yi, i = 1, * *, K.

For unsupervised clustering, the Self-Organizing Map may be implemented in various ways. Below
we describe two implementations: one-pass and iterative. In this work, the distance metric is the
Euclidean distance, and the algorithms are based on minimizing the square-error criterion.

4.1 One-Pass Implementation

The initial approach taken is the following. First, normalize all the coordinates to the range (-1,+1),
i.e, the feature space is a D-dimensional hypercube. Select a number of codebooks larger than the number
of expected data sources. Initialize the codebooks by placing them randomly near the center of the
hypercube, y, (0) 0. Then process the incoming data points represented by the feature vector x(t),
t= 0,---,N-1, where N-1 is the number of data points. For data point t, find the codebook vector y1(t)
closest to x(t), i.e.,

jjx(t) - Y, (t)j = mninjjx(t) - ys (t)jj, (6)

and update that codebook vector according to

Ys (t + 1) = Yi Wt + a(t[x(t) - Yi (t)], (7)

while leaving other codebooks unchanged. Here a(t) is a monotonically decreasing sequence of scalar-
valued gain coefficients, 0< a(t) <1. The usual choice for a(t) is

a(t) = aOc{1 (8)

where 0.1< aX(t) <0.9 and tm Ž N. Each time a codebook is updated, its counter is incremented by one to
keep track of the number of data points assigned to it. The codebook counter may be used to infer the
number of clusters (data sources); if its value is high, the codebook is considered to be a legitimate
cluster, otherwise the codebook is disregarded.

This implementation is very fast. However, it is sensitive to the order in which the data is processed
and also to the initialization of the codebook vectors. It can also be sensitive to the threshold used for
deciding whether a codebook represents a sufficient number of data points.

7
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4.2 Iterative Implementation

We have experimented with an iterative implementation of the Kohonen technique which is as
follows. We label the points not by time but by an index, say j = 1, * * *, N. Thus the data are represented
by feature vectors xi . First the codebook vectors (or cluster centroids) are initialized randomly. Then the

centroids are updated by presenting the data to them repeatedly over many iterations. At iteration t the
y1(t) are updated as follows: find the centroid closest to the data point j and move that centroid toward
this point. That is,

yi (t + 1) = y (t) + (t) Mij (t)[x - Yi (t)], (9)

where

1 if J1xj-yi(t)J| = minlxj -y(t)|(

M' 0 otherwise (10)

Here, MU are the elements of the cluster membership matrix, i.e., if Mij = 1, then point j belongs to

cluster i. Note that during one iteration all the data points are presented, while coefficient a(t) is held
fixed. As the iterations proceed, a(t) decreases monotonically according to the usual recipe given
above, where now 500< tm <10,000 depending on the desired accuracy. As an empirical rule of thumb, it
is suggested that tm = 500K, where K is the number of codebooks [10].

The iterative implementation is obviously slower because the basic one-pass computations are
repeated many (typically hundreds of) times. Its advantage is that the outcome is far less sensitive to the
order of data presentation and possibly less sensitive to initial centroid locations. Furthermore, the
codebook vectors yi are likely to be the correct centroids of the clusters. The number of points belonging

to cluster i, or the codebook counter, which may be used to infer the number of clusters, is Ni = Mij.

5. RELATIVE MERITS OF HOPFIELD-KAMGAR AND KOHONEN METHODS

As explained in Section 3, the Hopfield-Kamgar technique is more dependable than the conventional
techniques. The question is, therefore, whether to employ the Kohonen method or the Hopfield-Kamgar
method. After a careful examination of the advantages and disadvantages of the two methods, we
concluded that the Hopfield-Kamgar technique appears more suitable for the project at hand. The main
considerations leading to this conclusion are as follows.

* Accuracy of the Solutions: While the Hopfield-Kamgar method gives accurate cluster centroids,
there is no theoretical reason why the Kohonen method should produce precise centroid
locations-unless the number of iterations is exceedingly large.

* Correctness of the Final Number of Clusters: Employing the Kohonen technique, the final
number of data sources must be decided by comparing the numbers of data points within
different clusters. Those codebooks (clusters) that contain relatively few points are not
considered to be true sources of data. In the Hopfield-Kamgar technique, this matter is decided
by a more objective and elaborate scheme (as described in the following section).

* Accuracy of Effective Initial Guess for Number of Clusters: Using the Kohonen method, the
starting cluster number cannot be smaller than the actual cluster number. Therefore, to be on the

8



safe side, the user would have to supply the program with a starting cluster number that is
considerably larger than what the user actually thinks it is. In a way, the effective initial guess
should reflect the worst case scenario. In the Hopfield-Kamgar method, the initial guess can be
smaller (or larger) than the actual number of data sources. This allows the user to supply the
program with his best guess. rr

* Computational Costs: In the Hopfield-Kamgar technique, computations are more involved than
those in the Kohonen technique. If high precision is not needed for the centroid locations, then
the Kohonen technique is likely to be more efficient. However, two factors, namely insistence in
great precision and poor initial guess for cluster numbers, could lead to comparable efficiency for
the two techniques.

* Potential for Extension to Complex Clusters: The Hopfield-Kamgar method has already been
used to solve shape-specific clustering [4] as well as compact clustering, and has potential to be
extended to elongated clustering and other non-compact clusterings. It is not clear how the
Kohonen method could be extended to deal with non-compact clusters.

6. FINDING THE CORRECT NUMBER OF CLUSTERS

One should distinguish between the following two problems:

1. Given a set of patterns, partition it into M clusters so that patterns within each cluster are more
similar to each other than the rest, where M is a prespecified number,

2. Given a set of patterns, determine the correct number of clusters that exist in it.
These two problems are generally quite different and thus they require different solutions. Most of

the clustering algorithms assume that the number of clusters is already known, and require the user to
supply that information. However, for the problem of multi-source data deinterleaving, the true number
of clusters is generally unknown. Therefore, we need to solve both of the above problems
simultaneously. The scheme that we have developed for determining the number of clusters is described
below.

The user will supply an initial estimate of the number of clusters, say, k. The program will then
partition the data points into k clusters using the technique described earlier. Next, for each of the k
clusters, it will calculate its variance, a;2, for the ith cluster. For each pair of clusters, the two standard
deviations, Os's are then added up and normalized with respect to the distance between their respective
centroids. Now, consider a pair of clusters, say, i and j, and define their "pairwise normalized s.d.,"
ai = (ai + aj )/dij, where dij is the distance between the centroids of i and j. If F.ij is a small number,

then the two clusters must be well separated, but if it is large, they may be too close to each other to be
considered as two separate clusters. To implement this scheme reliably, one must quantify the notion of
large or small values for pairwise normalized standard deviations.

Here we assume that within-cluster variations follow normal distributions. That is, the variations of
data belonging to the same cluster follow a Gaussian distribution around the centroid of that cluster. Note
that because the main source of noise is jitter induced by the source, such an assumption is valid in most
cases. Thus, to decide whether the two clusters i and j should be considered as two or one, we will
calculate the overlap between the two Gaussians that are defined by the data points assigned to the two
clusters. The center of a Gaussian is assumed to be the centroid of that cluster, and its width is taken to
be the variance within that cluster. Recall that in a Gaussian distribution, the population confined within
two standard deviations of the mean comprises 95% of the total population. Therefore, if ai, <1/2, then

Automatic Data Sortine UsinR Neural Network Technioues 9
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clusters i and j can be regarded as two separate clusters with great confidence. On the other hand, if sij

>1, we can confidently assume that i and j are not two separate clusters. This is a conservative bound
because for identical Gaussians, if 6,u >0.9, then the two cannot be resolved. If neither of the above

conditions is satisfied, the two-clusters may or may not be distinct. In this case, we need to develop a
more elaborate test to decide the matter.

Two approaches come to mind: (i) Determine whether the combined data in the two subpartitions
agrees with the definition of a single Gaussian or not. (ii) Assume that there are two Gaussians and
determine whether the two can be resolved or not. In the first approach, the centroid and the standard
deviation of the combined data are first calculated. Next, data within certain radii, which are certain
fractions of the standard deviation from the centroid, are counted to determine whether they are in
agreement with the definition of a Gaussian distribution or not. If the number of data points within a
given radius is not enough, then the two subpartitions cannot be regarded as one, as there is an empty or
sparse space between them. The second approach is discussed below.

Consider the following pairwise density function for clusters i and j,

fq (x) = ( )d12 exp[- (x - y1 )2/22] + (2 2)d2 exp[ ( - yj)1 2/2], (11)

where d is the dimension of the feature space, Ni is the number of data points belonging to cluster i, and
Yi is its centroid. This density function has either one or two peaks. If fMu (x) has two peaks, then the

pairwise distribution is bimodal and the two clusters are, indeed, two. If there is only one peak, then the
two clusters overlap substantially, that is, they are not distinct and should be merged. Because of the
spherical symmetry of the Gaussian distributions, the peaks lie between the two centroids on the line
connecting yi to yj. Thus, the problem of finding the peaks is a simple one-dimensional search on the

line connecting the centroids. We note that this second approach is appropriate for supervised clustering
where the data points are labeled a priori.

We further note that in this cluster validation step, we have assumed that within-cluster variations
follow normal distributions. We have further assumed that within-cluster variations are identical for all
features (or variables), hence a spherically symmetric Gaussian distribution. A second assumption is that
the data sources are (roughly) equally active, that is, the number of data points in each cluster is
comparable, Ni = N1. Otherwise, genuine, but weak, clusters may be smeared by stronger ones. These

assumptions in the cluster validation step agree with those in the clustering technique, which is based on
the assumption that clusters are basically round, compact, and of roughly equal population. For clusters
that do not follow these assumptions, i.e., if they are elongated or have considerably different
populations, one must develop new techniques. The neural net technique we have used in this work can
potentially be generalized to handle these situations.

If we construct the pairwise density function with the assumption that a single source distribution can
have the general form

Ni| '1/2 xP[ 2 (x _Pi)T X - Yi. (12)
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where Xi is the covariance matrix, and the Euclidean distance is replaced by the Mahalanobis distance, A,

then the peaks of fu (x) would no longer lie on the line connecting the centroids, hence finding the peaks

turns into a difficult optimization problem.
rri

7. OTHER NEW CLUSTERING FEATURES

To increase the reliability and efficiency of our technique, many new ideas were developed. These
new ideas were tested on a sample of real-world data, and the useful ones were incorporated in the final
software. These new features are described in the following paragraphs.

7.1 Two-Stage Solution

To partition N data points into M clusters, one must use a network that contains M X N neurons.
When the number of neurons is large and the initial guess is poor (both in terms of their locations and
their numbers), then not only each iteration could take a long time, but also the number of iterations
required for convergence may be too large.

The initial activity of each neuron is decided by a random number assigned to it. These initial activity
rates imply certain initial locations for the centroids of the clusters. If the initial locations are poor, then
it may take many iterations to converge (if it does at all). Furthermore, if the number of neurons is large,
each iteration could take a long time, computational complexity per iteration is O(MN). We have found
that the following approach alleviates this problem. For a given value of M, the number of clusters, first
we solve (or attempt to solve) the problem for only a small random sample of data points, say
N, = 0.05N, thus cost per iteration is reduced by a factor of 20. If this problem is solved, then the final
locations of the centroids will be used as the initial locations of the centroids for the entire data set; that
is, the initial activity rate of each neuron is set to 1 if this neuron associates the data point with its nearest
centroid, and to 0 otherwise. Because these initial firing rates are usually very good, the network
converges in a few iterations.

7.2 Handling Poor Initial Values for Cluster Numbers

Our experience shows that for the case where the initial guess for the number of clusters is larger
than the correct number, then the syntax is rarely satisfied, at least not for any reasonable upperbound on
the number of allowed iterations. Therefore, we have introduced a fairly tight upperbound for the number
of iterations allowed for convergence for a given number of clusters M, when only a fraction of data
points is used. If this upperbound is exceeded, the program will restart not only from a new set of initial
firing rates for the neurons, but also with a reduced number of clusters, i.e., M will be reduced by 1.
Since this upperbound is tight, it is possible, though not common, that when M is reduced to its correct
value, the upperbound is exceeded before convergence. However, this is not a serious drawback, because
the program will begin to increase M once convergence has been achieved for a certain value of M.

7.3 Merging or Splitting and Activities of Neurons

If the two clusters i and j are found not to be distinct when using the criteria described in the previous
section, then the two are simply merged as one cluster. Thus, M is reduced by one and the program
restarts, but the initial activities of the neurons will not be set to random numbers, instead they are set
such that the starting centroids will be as follows. The centroid of the newly formed cluster is taken to be
the (weighted) mid point between the centroids of subclusters i and j, and the centroids of other clusters
will be what they were.
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When the clustering is complete for a particular value of the cluster numbers M, and all the clusters
are found to be distinct, then M is increased by one and the program restarts. However, the initial
activities of neurons will not be set to random numbers; instead, they are decided by the initial centroids.
That is, the initial activity of a neuron is set to 1 if that neuron associates the data point with its nearest
centroid, and to 0 otherwise. To determine the locations of the initial centroids, the following test is
done. One by one, each of the original M clusters is partitioned into two subclusters, and the one splitting
into two most distinct clusters is picked to contribute two initial centroids. That is, the two centroids
resulting from the split of this cluster together with the cen'troids of those clusters which were not split
will serve as the initial centroids when the program begins to partition the whole data set into M+1
clusters. It is noted that the partitioning of each cluster into two subclusters is also done in two stages
according to Section 6.

8. THE SOFTWARE AND SOME EXAMPLES

The original neural net clustering program was written in Fortran. For this project, the program was
translated to C and many new features were added to it. The software now contains about 700 lines of
code and includes about 18 functions. It uses Pixrects to display two-dimensional results. To have the
required flexibilities, the program uses mostly dynamic memory allocation. To run the program, the
command line must have the following format

compiled-name M N C <input-file >output-file,

where M is the initial guess for the number of clusters and N is the number of data points. C is a code to
invoke Pixrect to display the data and the calculated cluster centroids if so wished: if the display is
desired, C must be set to 20, otherwise there will be no display. The software was tested on many
examples; below, we present two cases. Figure 3(a) displays a data set consisting of 415 data points
coming from a single data source. The program was able to correctly detect the presence of only one data
source. The dark square shows the calculated cluster centroid. Figure 3(b) displays a data set consisting
of 896 data points coming from three data sources. The program was able to find the correct solution (the
three dark squares) from any initial guess for the number of data sources or any set of initial firing rates
for the neurons.

I __ -

a b
Fig. 3 - (a) The program detects the presence of only one data source. (b) The program finds the
correct solution (dark squares as centroids) from every initial guess for the neuronal activity rates or
number of data sources.

12



Automatic Data Sorting Using Neural Network Techniques

9. CONCLUSIONS

The results reported here have made a significant positive impact on accurately partitioning data and
revealed insight for further research into applying methods of artificial intelligence in signal processing.
Both the Hopfield-Kamgar and LVQ neural networks were examined with the primary emphasis on the
former technique.

The Hopfield-Kamgar algorithm takes the data environment and groups the data into bins, groups, or
clusters, each of which contains only one data source for further processing. The algorithm must analyze
the data environment and detect data clusters. A key aspect of the Hopfield-Kamgar technique is that it
creates a high-quality, statistically accurate cluster count within a case. To a very high accuracy, the data
are correctly associated with each other into their respective data bins. In each case, it was not known
ahead of time how many clusters were present; nor was it known even what upper limit to the number of
data sources would be encountered in any given case or collection.

The data analyzed has a time structure based upon two signal characteristics: the data repetition
interval and a data frame period. The former is a block of data coming in a specified burst from the
source, while the latter determines the time or period between bursts. Even the order of data presentation
contains significant infomation about the data sources. Further investigation of the time structure of the
data is recommended.

The Hopfield-Kamgar network was implemented with only two feature parameters, and was found to
arrive at highly accurate partitions of data into data source bins. The data set was, however, somewhat
limited in this initial investigation. Other studies using very large databases with thousands of cases
indicate that a minimum of eight feature parameters is needed to deinterleave most data sources from
each other. The full feature parametric set is necessary to maximally deinterleave the data.

The algorithm was developed on a Sun Workstation in software. The execution time is good for a
software simulation of a neural network. A significant increase in execution speed on the order of 10 to
1000 times could be accomplished by implementing the algorithm in either electrically programmable
read only memory (EPROM) chips or application specific integrated circuits (ASICs). This would allow
for the full spectrum of high-speed and real-time applications [11].

The algorithm is targeted at four major applications: (1) control of software bin parameter limits to
sort data sources, thereby reducing processing burdens, (2) control of hardware bin parameter limits in an
advanced signal processor developed under the 6.2 S&T block, (3) as an "analyst's aid" in the manual
analysis of data collections, and (4) as an automatic software-driven deinterleaver in the front end of an
automatic analysis system.
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